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Abstract

This report describes an application of the method of moments to
calculate the electromagnetic scattering from irregularly shaped, thin,
metallic at plates in free space. In the present technique, an ir-
regularly shaped plate is enclosed by a rectangle on which the surface-
current density is then expressed in terms of subdomain functions by
dividing the rectangle into subsections. A shape function is introduced
to ensure zero current outside the patch. The surface-current density is
determined using the electric �eld integral equation (EFIE) approach
in conjunction with the method of moments, and from a knowledge
of the surface-current density, the electromagnetic scattering from a
plate is calculated. Using this technique, the electromagnetic scattering
from (1) a hexagonal plate, (2) an equilateral triangular plate, (3) an
equilateral triangular plate with a concentric, equilateral triangular hole
and an inverted, equilateral triangular hole, and (4) a diamond-shaped
plate is computed and compared with the numerical results obtained by
using the Electromagnetic Surface Patch (ESP) code developed by Ohio
State University. The numerical results compare favorably with the
measurements performed on these shapes in the Langley Experimental
Test Range facility.

Introduction

A knowledge of electromagnetic (EM) scattering
from a complex-shaped metallic object is of practical
interest to electromagnetic analysts and engineers.
In recent years, considerable interest has developed
in the EM scattering analysis of polygonal plates
because a complex-shaped metallic object can al-
ways be modeled as an interconnection of these poly-
gonal at plates (ref. 1). An EM scattering anal-
ysis of a polygonal, metallic at plate can be
accomplished by using various numerical techniques.
One of the widely used techniques is the method
of moments in which a polygonal plate is �rst seg-
mented into a number of rectangular or nonrectangu-
lar surface patches called subdomains. The unknown
surface-current density on these subdomains is then
determined using the electric �eld integral equation
(EFIE) in conjunction with the method of moments.

The early work on polygonal at plates (ref. 2)
consisted of subdividing an irregularly shaped plate
into a collection of curvilinear cells that were rep-
resented numerically as fourth-order polynomials.
However, use of that method required a knowledge
of the coordinates of a large number of points on the
object, and this made the method unattractive. In
another approach (refs. 3 and 4), a nonrectangular
plate was viewed as an interconnection of polygonal
plates. The unknown amplitudes of the surface patch
modes were determined by expressing the currents on
the polygonal plates in terms of nonrectangular sur-

face patch modes and using the EFIE in conjunction
with the method of moments.

An Electromagnetic Surface Patch (ESP) code
was developed in 1988 under NASA Grant NSG 1498
by E. H. Newman at the ElectroScience Laboratory,
Ohio State University. (This code is described in
a manual entitled A User's Manual for the Electro-
magnetic Surface Patch Code: ESPVersion IV.) The
ESP code was based on the segmentation techniques
described in references 3 and 4. Even though the
segmentation technique used in the ESP code com-
pletely �lled the area of the nonrectangular plate,
extra current modes were required at the intercon-
nections of the polygonal plates to ensure a conti-
nuity of current. Furthermore, when nonrectangular
surface patch modes were used to express the sur-
face current, the resulting matrix would be symmet-
ric but not of a block Toeplitz nature, and hence it
would require more impedance matrix �lling time.
In the present work, a segmentation technique that
is both symmetric and results in a block Toeplitz
impedance matrix is developed to analyze the EM
scattering from polygonal, thin, metallic at plates.

In the present analysis, an irregularly shaped
plate is assumed to be enclosed by a rectangle with
sides equal to Wx and Wy, the maximum dimen-
sions in the x- and y-directions, respectively. By
dividing Wx into (M + 1) subdivisions and Wy into
(N+1) subdivisions, the surface-current density over



the rectangle is expressed in terms of overlapping
triangular functions in the direction of current ow
and a pulse function in the orthogonal direction. Zero
current outside the plate is ensured by introducing a
space function in the current expansion function. (A
space function is equal to 1/0 if the subdomain lies
inside/outside of the irregular plate.) Selecting the
testing functions to be the same as the expansion
functions allows the EFIE to be reduced to a matrix
equation that is solved by using standard matrix-
equation solver subroutines. The surface current on
the plate is then used to determine EM scattering due
to the plate. By using this technique, the EM scat-
tering due to several nonrectangular plates is com-
puted and compared with the results obtained from
Newman's ESP code. The results obtained from us-
ing the present method are also compared with the
experimental data measured in the Langley Experi-
mental Test Range (ETR) facility, which is a compact
range speci�cally designed for microwave scattering
measurements. The ETR is a dual anechoic chamber
with a Greorian reector system (ref. 5) containing
a 16-ft2 rolled-edge main reector.

The measured data are provided on a oppy disk
for the reader, a description of which is given in the
appendix.

Symbols

A(x; y; z) magnetic vector potential

Ei incident electric �eld vector

jEij absolute value of incident electric
�eld vector

Es(x; y; z) scattered electric �eld vector

Esx x-component of scattered �eld Es

Esy y-component of scattered �eld Es

Es� �-component of scattered �eld Es

Es� �-component of scattered �eld Es

Exi;Eyi;Ezi x-, y-, and z-components, respec-
tively, of incident electric �eld

E�i
; E�i

�- and �-components, respec-
tively, of incident electric �eld

ex(kx; ky; 0) Fourier transform of Esx(x; y; 0)

ey(kx; ky; 0) Fourier transform of Esy(x; y; 0)

Fxmn(kx; ky) Fourier transform of
Pm(x) Qn(y)

Fymn(kx; ky) Fourier transform of
Qm(x) Pn(y)

fFXg =
sin(kx�x=2)
kx�x=2

fFY g =
sin(ky�y=2)

ky�y=2

fFX1g =
sin[(sin �i cos �i)(k0�x=2)]

sin �i cos �i k0(�x=2)

fFY 1g =
sin[(sin �i sin �i)(k0�y=2)]
(sin �i sin �i)(k0�y=2)

f frequency, GHz

G(x; y; z=x0; y0) free-space-scalar Green's function

g(kx; ky; z=x
0; y0) Fourier transform of G(x; y; z=x0; y0)

Hi incident magnetic �eld vector

Ix(p) complex amplitude of pth x-
directed subdomain current mode

Iy(q) complex amplitude of qth y-
directed subdomain current mode

Js(x; y) induced surface-current density
vector on plate

Jsx(x; y) x-component of Js(x; y)

Jsy(x; y) y-component of Js(x; y)

j =
p
�1

js Fourier transform of Js

jsx x-component of js

jsy y-component of js

ki propagation vector of plane wave

kx Fourier transform variable with
respect to x

ky Fourier transform variable with
respect to y

kz complex propagation constant in
z-direction

k0 propagation constant in free
space

M + 1 number of subdivisions in
x-direction

m; n (m; n)th subdomain of induced
current

m0; n0 (m0; n0)th subdomain of induced
current

N + 1 number of subdivisions in
y-direction
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P total number of x-directed sub-
domains on plate

Pm(x) piecewise linear distribution in
x-direction

Pn(y) piecewise linear distribution in
y-direction

p equivalent to (m;n)th x-directed
subdomain

p0 equivalent to (m0; n0)th x-
directed subdomain

Q total number of y-directed sub-
domains on plate

Qm(y) pulse distribution in y-direction

Qn(x) pulse distribution in x-direction

q equivalent to (m; n)th y-directed
subdomain

q0 equivalent to (m0; n0)th y-directed
subdomain

R
p;p0

xx real part of Z
p;p0

xx

r position vector in direction of
plane wave

Sx(m;n) shape function for x-directed
current (= 1 or 0)

Sy(m; n) shape function for y-directed
current (= 1 or 0)

V
p0

x reaction of p0th x-directed sub-
domain testing function with Exi

V
q0

y reaction of q0th y-directed sub-
domain testing function with Eyi

Wx maximum dimension of plate in
x-direction

Wy maximum dimension of plate in
y-direction

X
p;p0

xx imaginary part of Z
p;p0

xx

x; y; z Cartesian coordinates of �eld
point

x0; y0; z0 Cartesian coordinates of source
point

Z
p;p0

xx mutual impedance between pth

and p0th x-directed subdomain
currents

Z
q;p0

xy mutual impedance between qth

y-directed and p0th x-directed
subdomain currents

Z
p;q0

yx mutual impedance between pth

x-directed and q0th y-directed
subdomain currents

Z
q;q0

yy mutual impedance between qth

and q0th y-directed subdomain
currents

�; � polar coordinate variables related
to kx; ky

�0 angle between Ei and �̂i, deg

�x = Wx
M + 1

�y =
Wy

N + 1

� delta function

�0 free-space wave impedance

�; � angles of scattered electro-
magnetic wave

�i; �i incident angles of electromagnetic
wave

�̂i; �̂i unit vectors along �i and �i
axes, respectively, in spherical
coordinate system

�̂s; �̂s unit vectors along �s and �s
axes, respectively, in spherical
coordinate system

�0 wavelength in free space

�0 magnetic permeability of free
space

� total radar cross section

�EE copolarized radar cross sec-
tion when E-polarized wave is
transmitted

�EH cross-polarized radar cross
section when E-polarized wave
is transmitted

�HE cross-polarized radar cross
section when H-polarized wave
is transmitted
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�HH copolarized radar cross sec-
tion when H-polarized wave is
transmitted

! angular frequency, 2�f

r gradient operator

Abbreviations:

EFIE electric �eld integral equation

EM electromagnetic

ESP Electromagnetic Surface Patch

RCS radar cross section

Theory

General Theory

Consider an irregularly shaped, in�nitesimally thin plate excited by a plane wave as shown in �gure 1(a).

By using the representation of reference 6, the incident �eld with a time variation of ej!t may be written as

Ei(x; y; z) =
�
�̂iE�i

+ �̂iE�i

�
e�jki�r

=
�
�̂i jEij cos �0+ �̂i jEij sin �0

�
e�jki�r (1)

where

ki � r = �k0 sin �i (x cos �i + y sin �i)

and k0 is the free-space wave number. From equation (1), the x-, y-, and z-components of the incident �eld

may be written, respectively, as
Exi = E�i

cos �icos �i� E�i
sin �i

Eyi = E�i
cos �isin �i +E�i

cos �i

Ezi = �E�i
sin �i

(2)

The corresponding magnetic �eld components are obtained through

Hi =
1

�
0

ki �Ei (3)

where �
0
is the free-space impedance. The incident �eld with E�i

6= 0, E�i
= 0 (i.e., �0 = 0�) is called the

H-polarized wave and with E�i
= 0, E�i

6= 0 (i.e., �0 = 90�) is called the E-polarized wave.

Let Js(x; y) be the induced surface-current density on the plate. The electromagnetic �eld due to Js(x; y)

located in the z = 0 plane may be obtained from the magnetic vector potential A(x; y; z) as

Hs(x; y; z) =
1

�0
r�A(x; y; z) (4)

Es(x; y; z) =
�j!

k2
0

n
k20 A(x; y; z) +r [r �A(x; y; z)]

o
(5)

where �0 is the permeability of the medium. The vector potential A(x; y; z) in equations (4) and (5) satis�es

the wave equation

r2 A(x; y; z) + k2
0
A(x; y; z) = ��0 Js(x

0; y0) (6)

If G(x; y; z=x0; y0) is the free-space-scalar Green's function, the magnetic vector potential A(x; y; z) is obtained

from

A(x; y; z) =

Z Z
Js(x

0; y0) G(x; y; z=x0; y0)dx0 dy0 (7)

where G(x; y; z=x0; y0) satis�es

�
r2+ k20

�
G(x; y; z=x0; y0) = ��0 �(x� x0) �(y � y0) �(z) (8)
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The solution of equation (8) in the (kx; ky) domain may be written as (ref. 7)

G(x; y; z=x0; y0) =
1

(2�)2

1Z

kx=�1

dkx

1Z

ky=�1

g(kx; ky; z=x
0; y0) ejkxx+jkyy dky (9)

where

g(kx; ky; z=x
0; y0) =

�j�

2kz
e�jkxx

0
�jkyy

0

e�jkzz

kz =

8<
:

q
k20 � k2x� k2y (k2x + k2y � k20)

�j
q
k2x + k2y � k20 (k2x + k2y � k20)

and the + and � signs in the exponential are used for z < 0 and z > 0, respectively. Substituting equation (9)

into equation (7) gives the magnetic vector potential

A(x; y; 0) =
�j�0

(2�)2

1Z

kx=�1

dkx

1Z

ky=�1

js(kx; ky)

2kz
ejkxx+jkyy dky (10)

where
js(kx; ky) = x̂jsx+ ŷjsy

=

Z
dx0

Z
Js(x

0; y0) e�jkxx
0�jkyy

0

dy0
(11)

Substituting equation (12) into equation (5) allows us to write the scattered tangential components of the

electric �eld over the plate due to the induced currents as

Esx(x; y; 0) =
�!�0

(2�)2k20

1Z

kx=�1

dkx

1Z

ky=�1

h�
k20 � k2x

�
jsx(kx; ky)� kxky jsy(kx; ky)

i
�ejkxx+jkyy

dky

2kz
(12)

Esy(x; y; 0) =
�!�0

(2�)2k20

1Z

kx=�1

dkx

1Z

ky=�1

h�
�kxky

�
jsx(kx; ky) +

�
k20 � k2y

�
jsy(kx; ky)

i

�ejkxx+jkyy
dky

2kz

(13)

Subjecting the total tangential electric �eld on the plate to zero gives the following equations

Esx + Exie
�j(ki�r) = 0

Esy + Eyie
�j(ki�r) = 0

Substituting equations (2), (12), and (13) into the above equations gives the following integral equations with

surface current as an unknown variable:

!�0

(2�)2k20

1Z

kx=�1

dkx

1Z

ky=�1

h�
k20 � k2x

�
jsx(kx; ky)� kxky jsy(kx; ky)

i
�ejkxx+jkyy

dky

2kz
= Exie

�jki�r (14)
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!�0

(2�)2k20

1Z
kx=�1

dkx

1Z
ky=�1

h�
�kxky

�
jsx(kx; ky) +

�
k20 � k2y

�
jsy(kx; ky)

i
� ejkxx+jkyy

dky

2kz
= Eyie

�jki�r (15)

With the aid of �gure 1(b), the surface-current density distributions can be expressed as

Jsx(x; y) =

MX
m=1

N+1X
n=1

Sx(m; n) Ix(m;n) Pm(x) Qn(y) (16a)

and

Jsy(x; y) =

M+1X
m=1

NX
n=1

Sy(m;n) Iy(m; n) Qm(x) Pn(y) (16b)

where Ix(m;n) and Iy(m; n) are the unknown current amplitudes and

Pm(x) =

8>><
>>:
1� xm�x

�x
((xm��x) � x � xm)

1� x�xm
�x

(xm � x � (xm+�x))

0 (Otherwise)

Qn(y) =

(
1 (n� 1)�y � y � n �y)

0 (Otherwise)

If the (m; n)th cell lies inside the plate, then

Sx(m;n)
Sy(m;n)

�
= 1

Otherwise,

Sx(m;n)
Sy(m;n)

�
= 0

Also,

�x =
Wx

M + 1

�y =
Wy

N + 1

Here, Wx and Wy are the maximum dimensions of the plate in the x- and y-directions, respectively. The

(m; n)th cell is considered to be inside the plate if the area occupied by the plate is more than 50 percent of

the cell area.

Using equation (11) allows us to write the Fourier transform of the patch current as

jsx(kx; ky) =

MX
m=1

N+1X
n=1

Sx(m;n) Ix(m;n) Fxmn(kx; ky) (17a)

jsy(kx; ky) =

M+1X
m=1

NX
n=1

Sy(m;n) Iy(m; n) Fymn(kx; ky) (17b)
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where

Fxmn(kx; ky) = �x �y fFY g fFXg2 exp

�
jkx

�
Wx

2
� xm

�
+ jky

�
Wy

2
� yn+

�y

2

��

Fymn(kx; ky) = �x �y fFY g2 fFXg exp

�
jkx

�
Wx

2
� xm+

�x

2

�
+ jky

�
Wy

2
� yn

��

fFXg =
sin (kx �x=2)

kx �x=2

fFY g =
sin (ky �y=2)

ky �y=2

With reference to �gure 1(b), the double summation with respect to m and n in equation (17) can be

represented by a single summation with respect to p or q. If P and Q are the maximum numbers of x- and

y-domain subcells, respectively, on the plate, then equations (17) may be rewritten as

jsx(kx; ky) =
PX
p=1

Ix(p) Fxp(kx; ky) (18a)

jsy(kx; ky) =

QX
q=1

Iy(q) Fyq(kx; ky) (18b)

Substitution of equations (18) into equations (14) and (15) and use of the method of moments yields

PX
p=1

Ix(p) Z
p;p0

xx +

QX
q=1

Iy(q) Z
q;p0

xy = V p0

x (19)

PX
p=1

Ix(p) Z
p;q0

yx +

QX
q=1

Iy(q) Z
q;q0

yy = V q0

y (20)

where p0 = 1; 2; : : : P , q0 = 1; 2; : : : Q, and

Zp;p0

xx =
!�0

(2�)2k2
0

1Z

kx=�1

1Z

ky=�1

k2
0
� k2x
2kz

Fxp(kx; ky) F
�

xp0(kx; ky) dkx dky (21)

Zq;p0

xy =
!�0

(2�)2k2
0

1Z

kx=�1

1Z

ky=�1

�kxky
2kz

Fyq(kx; ky) F
�

xp0(kx; ky) dkx dky (22)

Zp;q0

yx =
!�0

(2�)2k2
0

1Z

kx=�1

1Z

ky=�1

�kxky
2kz

Fxp(kx; ky) F
�

yq0(kx; ky) dkx dky (23)

Zq;q0

yy =
!�0

(2�)2k2
0

1Z

kx=�1

1Z

ky=�1

k2
0
� k2y

2kz
Fyq(kx; ky) F

�

yq0(kx; ky) dkx dky (24)

V p0

x =

Z Z
Exie

�jki�rPm0(x0) Qn0(y0) dx0 dy0 (25)

V q0

y =

Z Z
Eyie

�jki�rQm0(x0) Pn0(y0) dx0 dy0 (26)
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In equations (21){(24), the superscript * indicates a complex conjugate. Using the expressions for Fxp and Fyq
with the substitutions kx = k0� cos � and ky = k0� sin � allows equations (21), (22), (23), and (24) to be

written, respectively, in terms of the new variables (�; �) as

Zp;p0

xx =
�
0
k2
0
�2x �2y

�2

1Z

�=0

� d�

�=2Z
�=0

1� �2 cos2�

2
p
1� �2

fFY g2 fFXg4

� cos[k0(xp;p0) � cos �] cos[k0(yp;p0) � sin �] d�

(27)

where xp;p0 = xm� xm0 and yp;p0= yn� yn0,

Zq;p0

xy =
�
0
k2
0
�2x �2y

�2

1Z

�=0

� d�

�=2Z
�=0

�2 cos � sin �

2
p
1� �2

fFY g3 fFXg3

� sin[k0(xq;p0) � cos �] sin[k0(yq;p0) � sin �] d�

(28)

where xq;p0= xm� xm0+�x
2
and yq;p0= yn � yn0�

�y
2
,

Zp;q0
yx = Zq;p0

xy (29)

and

Zq;q0

yy =
�0k

2
0
�2x �2y

�2

1Z

�=0

� d�

�=2Z
�=0

1� �2 sin2�

2
p
1� �2

fFY g4 fFXg2

� cos[k0(xq;q0) � cos �] cos[k0(yq;q0) � sin �] d�

(30)

where xq;q0 = xm� xm0 and yq;q0 = yn � yn0. In deriving equations (27){(30), the even and odd properties of

the integrands have been utilized.

Integrating equations (25) and (26) with respect to x0 and y0 gives, respectively,

V p0

x = �x �y Exi fFY 1g fFX1g
2
exp

�
jk0

�
xm0�

Wx

2

�
sin �i cos �i

�

� exp

�
jk0

�
yn0�

Wy

2
�

�y

2

�
sin �i sin �i

� (31)

and

V q0

y = �x �y Eyi fFY 1g
2
fFX1g exp

�
jk0

�
xm0�

Wx

2
�

�x

2

�
sin �i cos �i

�

� exp

�
jk0

�
yn0�

Wy

2

�
sin �i sin �i

� (32)

where fFX1g is obtained from fFXg by replacing � cos � with sin �i cos �i, and fFY 1g is obtained from

fFY g by replacing � sin � with sin �i sin �i.

The elements Z
p;p0
x;x ; Z

q;p0
xy , etc., of the coe�cient matrix are determined from equations (27){(30) by using

gauss-quadrature numerical integration techniques. The presence of
p
1� �2 in the denominators of the

integrands of equations (27){(30) causes numerical di�culty around � = 1. However, this is avoided by

splitting the � integration into two parts: the �rst part consists of integration from � = 0 to 1, and the second

part consists of integration from � = 1 to 1. When � is replaced by sin � in the �rst part and by cosh � in

the second part, equation (27) becomes

Zp;p0

xx = Rp;p0

xx + jXp;p0

xx (33)
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where

Rp;p0
xx =

�
0
k2
0
�2x �2y

2(�)2

�=2Z

�=0

sin � d�

�=2Z

�=0

(1� sin2 � cos2 �) fFY g2 fFXg4

�cos[k0(xp;p0) sin � cos �] cos[k0(yp;p0) sin � sin �] d�

Xp;p0
xx =

j�
0
k2
0
�2x �2y

2(�)2

1Z

�=0

cosh � d�

�=2Z

�=0

(1� cosh2 � cos2 �) fFY g2 fFXg4

�cos[k0(xp;p0) cosh � cos �] cos[k0(yp;p0) cosh � sin �] d�

where fFXg and fFY g in the equations for R
p;p0
xx and X

p;p0
xx are, as de�ned earlier, with the appropriate change

of variables.

Similarly, the singularities due to the presence of
p
1� �2 in the denominators of equations (28){(30) are

removed and thus yield expressions analogous to equation (33).

Equations (19) and (20) can now be solved for Ix(p) and Iy(q) either by using the matrix inversion method

or by decomposing the impedance matrix into lower and upper triangular matrices. We show later that the

method of triangular decomposition (ref. 8) is preferred over the matrix inversion method because the former

takes less central processing unit (CPU) time.

Radar Cross Section

The radiation �eld due to the plate is given by (ref. 9)

E�s =
�
ex(kx; ky; 0) cos �+ ey(kx; ky; 0) sin �

� jk0
2�r

e�jk0r (34)

E�s =
�
ey(kx; ky; 0) cos �� ex(kx; ky; 0) sin �

�
cos �

jk0

2�r
e�jk0r (35)

where ex(kx; ky; 0) and ey(kx; ky; 0) are the Fourier transforms of the tangential electric �eld components at

the interface z = 0 (obtained from eq. (13)) and are given, respectively, as

ex(kx; ky; 0) =
�!�0

k2
0

h
(k2
0
� k2x) jsx(kx; ky)� kxky jsy(kx; ky)

i

2kz
(36)

and

ey(kx; ky; 0) =
�!�0

k2
0

h
�kxky jsx(kx; ky) + (k2

0
� k2y) jsy(kx; ky)

i

2kz
(37)

Substituting equations (36) and (37) into equations (34) and (35) gives, respectively,

Es� =
�!�

k2
0

�
jsx(kx; ky) f1g+ jsy(kx; ky) f2g

� jk0
2�r

e�jk0r (38)

and

Es� =
�!�

k2
0

�
jsx(kx; ky) f3g+ jsy(kx; ky) f4g

�
cos �

jk0

2�r
e�jk0r (39)

where

f1g =
k2
0
� k2x

2kz
cos ��

kxky

2kz
sin �

9



f2g = �kxky
2kz

cos �+
k2
0
� k2y

2kz
sin �

f3g = �kxky
2kz

cos �� k2
0
� k2x

2kz
sin �

f4g = k2
0
� k2y

2kz
cos �+

kxky

2kz
sin �

By substituting kx = k0 sin � cos � and ky = k0 sin � sin �, the above equations reduce to

f1g = k0

2
cos � cos �

f2g = k0

2
sin � cos �

f3g = �k0 sin �

2 cos �

f4g = k0 cos �

2 cos �

By using the above expressions, the scattered electric �eld components are obtained as

Es� =
��0 cos �

2

�
jsx(kx; ky) cos �+ jsy(kx; ky) sin �

� jk0
2�r

e�jk0r (40)

Es� =
��0
2

�
jsy(kx; ky) cos �� jsx(kx; ky) sin �

� jk0
2�r

e�jk0r (41)

After substituting for jx and jy and performing a few mathematical manipulations, the scattered �eld

components are written as

Es� =
�j�0k0 �x k0 �y �0

4�
p
�

e�jk0r

2
p
�r

cos �

8<
:

2
4

PX
p=1

Ix(p)
Fxp(kx; ky)

�x �y
cos �

3
5

+

2
4

QX
q=1

Iy(q)
Fyq(kx; ky)

�x �y
sin �

3
5
9=
;

(42)

Es� =
�j�0k0 �x k0 �y �0

4�
p
�

e�jk0r

2
p
�r

8<
:

2
4

QX
q=1

Iy(q)
Fyq(kx; ky)

�x �y
cos �

3
5 �

2
4

PX
p=1

Ix(p)
Fxp(kx; ky)

�x �y
sin �

3
5
9=
; (43)

In equations (42) and (43), Fxp(kx; ky) and Fyq(kx; ky) are calculated at kx = �k0 sin � cos � and

ky = �k0 sin � sin �. The radar cross section of the plate, as de�ned in reference 10, is then obtained

from

� = lim
r!1

4�r2
jEsj2
jEij2

(44)

where

jEsj2 = jEs�j2+ jEs�j2

jEij2 = jE�i
j2 + jE�i

j2

The radar cross section de�ned in equation (44) is the total monostatic radar cross section (RCS) of an

object. However, in most of the measurement, either E-polarized or H-polarized waves are transmitted and the

10



E-polarized and H-polarized scattered far �elds are measured separately. In order to compare the calculated

results with the measurement, the radar cross section may be de�ned as

�HH = lim
r!1

4�r2
jEs�j

2

jE�ij
2

(45a)

�HE = lim
r!1

4�r2
jEs�j

2

jE�ij
2

(45b)

�EH = lim
r!1

4�r2
jEs�j

2

jE�ij
2

(45c)

�EE = lim
r!1

4�r2
jEs�j

2

jE�ij
2

(45d)

Numerical Results

In this section the RCS of nonrectangular, thin
metallic plates is calculated by using equations (44)
and (45). To validate the present formulation, the
RCS computed by using equation (44) is compared
with (1) the RCS computed by using Newman's
ESP code and (2) the RCS measured in the Langley
Experimental Test Range facility.

RCS of Hexagonal Plate

As a �rst example, a hexagonal plate with a =
2:074 cm, as shown in �gure 2, is considered. To
study the edge behavior, the induced current densi-
ties along the XX- and Y Y -planes, as shown in �g-
ure 2, are calculated using the present method and
are plotted in �gure 3 for E-polarized (�0 = 90�)
and H-polarized (�0 = 0�) incident waves. Fig-
ure 3 shows that the normal and tangential com-
ponents of the current to an edge tend to behave
as expected; i.e., the normal component of the cur-
rent to an edge goes to 0 and the tangential compo-
nent to an edge approaches 1. Figure 3 also shows
that M = N � 19 gives stable values of the current
densities.

Furthermore, to establish the convergence of the
method, monostatic RCS's of a hexagonal plate using
equation (44) are calculated as a function of angle
of incidence �i for M = N = 15; 19; 21, and 23
and are presented in �gure 4. In �gure 4(a), 0� �
�i � 90� for �i = 0� or 180� indicates the XZ-
plane. Similarly, in �gure 4(c), 0� � �i � 90� for
�i = �90� or 90� indicates the Y Z-plane. Because
all RCS calculations in this report are made for the
XZ-, Y Z-, and XY -planes, this notation is followed
throughout in this report. From �gure 4 we can
conclude that M = N � 19 (which corresponds to

the subdomain size < �0=10) gives reasonably stable
results.

Large values of M and N are required to obtain
stable results when a at plate is illuminated by a
plane wave at the grazing angle because of a rapid
variation of the phase of incident electric �eld along
the plate surface. To get the quantitative estimation
of the stability for grazing incidence, the RCS of the
hexagonal plate shown in �gure 2 is calculated as a
function of �i for �i = 90� and is shown in �gure 5.

The validity and accuracy of the present formu-
lation are compared with measured results and with
the results obtained by the Electromagnetic Surface
Patch (ESP) code in �gure 6 for parametric values
given in the �gure. For the measurement of the RCS,
a hexagonal plate with dimensions shown in �gure 2
with a thickness equal to 0.16 cm was fabricated and
the RCS was measured in the Langley Experimental
Test Range facility. While using the ESP code, the
number of modes selected was equal to 511, whereas
the number of modes used for the present method
was 524. Figures 3{6 show that the RCS calcula-
tions of this paper compare reasonably well with the
measurements and numerical results obtained from
the ESP code.

Figure 7 shows the RCS of the hexagonal plate
that was calculated for grazing incidence by using the
present formulation along with the measured data
and results obtained using the ESP code. According
to �gure 7, the present method shows good agree-
ment with the measured data for the incidence an-
gles normal to the edges of the plate. However,
for incidence angles along the corners of a plate, a
disagreement occurs between the two results which
may be attributed to inadequate modeling of the
corners.
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RCS of Equilateral Triangular Plate

As a second example, an equilateral triangular
plate with a = 5:08 cm is considered, as shown in
�gure 8. Monostatic RCS's of the plate are calcu-
lated as a function of the angle of incidence �i and
are shown in �gure 9 for parametric values given in
this �gure. From this �gure, we again conclude that
M = N � 19 gives stable results for the triangular
plate. From these values of M and N and because
the hexagonal and equilateral triangular plates con-
sidered so far in this paper have dimensions around
2�0, one also can conclude that a subcell size of
approximately �=10 is su�cient for obtaining sta-
ble results. Also, because all the plates considered
in this paper have maximum dimensions of approxi-
mately 2�0, all future calculations are performed us-
ing M = N = 19. However, for larger sized plates
(larger than 2�0), larger values of M and N are re-
quired for convergence in accord with the �=10 sub-
cell criterion.

For parametric values given in �gure 10, the RCS
of the triangular plate is calculated by using the
present method and is compared both with the RCS
computed by using the ESP code and with the RCS
measured in the Langley Experimental Test Range
facility. The RCS of the triangular plate for grazing
incidence is also calculated and presented in �gure 11.
From these �gures we can conclude that the RCS
predicted by the present method is in good agreement
with both the measured data and the results obtained
from the ESP code. Note in the results shown
above that the number of modes selected for the
ESP code was 312, whereas the number of modes
P + Q for the present method was 324. Because
of the unavailability of measured data, the results
in �gures 10(a) and 11 cannot be compared with
measurements.

To validate the present technique over a wide
frequency band, monostatic RCS's of the triangular
plate shown in �gure 8 are calculated for a �xed angle
of incidence as a function of frequency, and these are
presented in �gure 12 along with the measured data
and the results obtained using the ESP code. The
results obtained by using both methods (the ESP
code and the present method) compare very well with
the measurements.

RCS of Equilateral Triangular Plate With

Concentric, Equilateral Triangular Hole

An equilateral triangular plate with a concentric,
equilateral triangular hole as shown in �gure 13 with
a = 5:08 cm and b = 2:54 cm is considered here as
a third example. For the parametric values given

in �gures 14 and 15, the RCS's of this plate are
calculated by using the present method along with
the results obtained from the ESP code and the
measured data. One can observe that the present
method gives RCS estimates that are comparable
with the measured data and with the ESP-code
calculation.

To compare frequency dependencies, the mono-
static RCS's of the plate shown in �gure 13 are cal-
culated for two angles of incidence (�i = 90�; �i = 90�

and �i = 90�; �i = �90�) as a function of fre-
quency, and these data are presented in �gure 16
along with measured and calculated results from
the ESP code. For the incidence angle �i = 90�;
�i = 90� (the incidence on the tip), the predicted
RCS's are comparable with the other results. How-
ever, for the incidence angle �i = 90�; �i = �90�

(the edge on incidence), the nulls and peaks pre-
dicted by the present method are shifted in frequency
from those observed in the measured data and in
the results obtained from the ESP code. Note in
these calculations that the number of modes used
for the present method was 217 and the number of
modes used for the ESP code was marginally smaller
than 217.

RCS of Equilateral Triangular Plate With

Inverted, Equilateral Triangular Hole

An equilateral triangular plate with an inverted,
equilateral triangular hole as shown in �gure 17 is
considered next. Monostatic RCS's computed using
the present method for various angles of incidence
and polarization are presented in �gures 18 and 19
and compared with the results obtained from the
ESP code. The number of modes used in both
methods was the same. The agreement between the
two methods was reasonably good. Because of the
unavailability of experimental results for this case,
the results shown in �gures 18 and 19 could not be
compared with the measured data.

The monostatic RCS's of the equilateral triangu-
lar plate with an inverted equilateral triangular hole
as a function of frequency for a given angle of in-
cidence are calculated by using the present method
and are presented in �gure 20 along with the results
obtained from the ESP code. Good agreement was
observed between the results of both methods.

RCS of Diamond-Shaped Plate

By using the present formulation, the RCS's of
a diamond-shaped plate as shown in �gure 21 are
calculated and presented in �gures 22 and 23 along
with measured data and the results obtained from
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the ESP code. Again, the agreement among the
techniques and measurements is quite good. The
number of modes for the two methods was again
selected to be the same.

Comparison of CPU Time

From the results presented so far, the present
method predicts the RCS of a polygonal plate with
reasonable accuracy. The number of modes required
to achieve this accuracy is slightly higher than the
number of modes required by the ESP code for the
same accuracy. This agreement is due to the fact
that the edge conditions on the surface currents
are not explicitly taken into account in the present
formulation. To see the merits of the present method,
one must compare the CPU time required to run the
present code with the CPU time required by the ESP
code. For a CPU time comparison, the RCS of the
hexagonal plate shown in �gure 2 is calculated by
using the ESP code and the present method. The
CPU time required by both methods is calculated as
a function of the number of patch current modes and
is plotted in �gure 24. For these time comparisons,
both codes were run on a Sun SPARCstation.

As seen in �gure 24, the present method with tri-
angular decomposition techniques takes considerably
less CPU time than the ESP code. This is mainly due
to the block Toeplitz nature of the impedance matrix
in the present method. Because the edge conditions
on the surface currents are not explicitly taken into
account, the present method requires more modes
than the ESP code for reasonably accurate results.
However, from the earlier comparisons of the results
obtained by both methods, the di�erence between
the number of modes used for the present method
and the ESP code is marginal. (The present method
requires 524 modes as compared with 511 modes re-
quired by the ESP code.) The marginal increase in
the number of modes for the present method may
still be preferred from the CPU time consideration.

Figure 24 also gives the CPU time in seconds as
required by the present method using the matrix in-
version method and the matrix triangular decompo-
sition method. Figure 24 shows that the matrix in-
version method takes a much longer CPU time than
that taken by the matrix decomposition method.

Concluding Remarks

The method of moments has been described to
determine the monostatic radar cross section (RCS)
of irregularly shaped, thin, metallic at plates in free
space. The surface-current density on an irregularly
shaped plate has been expressed in terms of rectangu-
lar subdomain functions by enclosing the plate by a
rectangle and dividing the rectangle into rectangular
subdomains. A shape function has been used to en-
sure zero current outside the arbitrarily shaped plate.
The electric �eld integral equation (EFIE) has been
used in conjunction with the method of moments to
determine the surface-current density on the irregu-
larly shaped plate. The monostatic RCS's of (1) a
hexagonal plate, (2) an equilateral triangular plate,
(3) an equilateral triangular plate with a concentric,
equilateral triangular hole and an inverted, equilat-
eral triangular hole, and (4) a diamond-shaped plate
have been compared with measured data and with
the results obtained by using the Electromagnetic
Surface Patch (ESP) code. From these comparisons,
one can conclude that the present method calculates
the RCS's of these geometries with good accuracy.
Because an irregularly shaped plate is divided into
identical rectanglar subdomains in the present formu-
lation, the resulting impedance matrix in the moment
method is not only symmetrical but also of block
Toeplitz nature. This e�ect is shown to result in
a considerable time savings in �lling the impedance
matrix without sacri�cing accuracy.

NASALangley Research Center

Hampton, VA 23681-0001

July 26, 1993
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Appendix

Description of Floppy Disk Contents

A double-sided/high-density (DS/HD) 31
2
-in. oppy disk containing several data �les has been provided for

further clari�cation of this report. These data �les contain the experimental data and the computed results
used in plotting various �gures in the report. The computed and experimental data for a �gure are stored in a
�le having the same name as the �gure. For example, the data used to plot �gure 3(a) may be found in a �le
named �g3a.dat.

The oppy disk may be read using an IBM PC, PC/XT, or PC/AT with MS-DOS 2.1 or higher and a

31
2
-in. drive. The data on the disk are in a compressed form. To read the data, the �le �gure.zip must be

uncompressed �rst. This is done as shown below. Create a directory called temp, and then use the command

pkunzip �gure.zip c: temp

This will write all data �les in the temp directory.

The reader can obtain a copy of this oppy disk by contacting the authors at the following address:

Guidance and Control Division
Antenna and Microwave Research Branch
NASA Langley Research Center
MS 490
Hampton, VA 23681-0001
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Figure 1. Geometry of irregularly shaped, thin, metallic at plate.
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Figure 2. Thin, metallic at plate of hexagonal shape with a = 2:074 cm.
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(a) x-component along XX-plane with H-polarized plane wave.
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(b) y-component along XX-plane with H-polarized plane wave.

Figure 3. Magnitude of x- and y-components of surface-current density alongXX- and Y Y -planes on hexagonal
plate (shown in �g. 2) excited by H- and E-polarized plane waves with angle of incidence (�i = 80�; �i = 0�)
for M = N = 15; 19; 21, and 23.

18



15
19
21
23

M = N

2.0

1.5

1.0

.5

0
-.50 -.25 0 .25 .50

x/Wx

|I   |y

× 102

(c) y-component along XX-plane with E-polarized plane wave.

15
19
21
23

M = N

.20

.15

.10

.05

0
-.50 -.25 0 .25 .50

y/Wy

|I   |x

× 102

.25

.30

.35

.40

(d) x-component along Y Y -plane with H-polarized plane wave.

Figure 3. Continued.
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Figure 3. Concluded.
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Figure 4. Monostatic RCS of hexagonal plate (shown in �g. 2) excited by H- and E-polarized plane waves
(�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz with M = N = 15; 19; 21, and 23.
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Figure 4. Concluded.
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Figure 5. Monostatic RCS of hexagonal plate (shown in �g. 2) excited by E-polarized plane wave (�0 = 90�)
as a function of �i for f = 11:811 GHz with M = N = 15; 19; 21, and 23 and �i = 90� (grazing incidence).
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(b) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.

Figure 6. Monostatic RCS of hexagonal plate (shown in �g. 2) excited by H- and E-polarized plane waves
(�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz with M = N = 19.
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(c) H-polarized plane wave (�0 = 0�) at �i = �90
� and 90�.
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(d) E-polarized plane wave (�0 = 90�) at �i = �90
� and 90�.

Figure 6. Concluded.
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Figure 7. Monostatic RCS of hexagonal plate (shown in �g. 2) excited by E-polarized plane wave (�0 = 90
�
)

as a function of �i for f = 11:811 GHz with M = N = 19 and �i = 90
�
(grazing incidence).
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Figure 8. Equilateral triangular, thin, metallic at plate with a = 5:08 cm lying in XY -plane.
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(b) E-polarized plane wave (�0 = 90�) at �i = 90� and �90�.

Figure 9. Monostatic RCS of equilateral triangular plate (shown in �g. 8) excited by H- and E-polarized plane
waves (�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz with M = N = 11; 15; 19, and
21.
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(c) H-polarized plane wave (�0 = 0�) at �i = 0� and 180�.
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(d) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.

Figure 9. Concluded.
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(a) E-polarized plane wave (�0 = 90�) at �i = 90� and �90�.
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(b) H-polarized plane wave (�0 = 0�) at �i = 90� and �90�.

Figure 10. Monostatic RCS of equilateral triangular plate (shown in �g. 8) excited byH- and E-polarized plane
waves (�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz and M = N = 19.
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(c) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.
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(d) H-polarized plane wave (�0 = 0�) at �i = 0� and 180�.

Figure 10. Concluded.
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Figure 11. Monostatic RCS of equilateral triangular plate (shown in �g. 8) excited by E-polarized plane wave
(�0 = 90�) as a function of �i for f = 11:811 GHz with M = N = 19 and �i = 90� (grazing incidence).
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Figure 13. Equilateral, triangular, thin, metallic at plate with concentric, equilateral triangular hole with
a = 5:08 cm and b = 2:54 cm.
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(a) E-polarized plane wave (�0 = 90�) at �i = 90� and �90�.
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(b) H-polarized plane wave (�0 = 0�) at �i = 90� and �90�.

Figure 14. Monostatic RCS of equilateral triangular plate (shown in �g. 13) excited by H- and E-polarized
plane waves (�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz with M = N = 19.
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(c) H-polarized plane wave (�0 = 0�) at �i = 0� and 180�.
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(d) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.

Figure 14. Concluded.
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Figure 15. Monostatic RCS of equilateral triangular plate with concentric, equilateral triangular hole (shown
in �g. 13) excited by E-polarized plane wave (�0 = 90�) as a function of �i for f = 11:811 GHz with
M = N = 19 and �i = 90� (grazing incidence).
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Figure 16. Monostatic RCS of equilateral triangular plate with concentric, equilateral triangular hole (shown
in �g. 13) excited by E-polarized plane waves (�0 = 90�) at angles of incidence as a function of frequency
for M = N = 19.
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Figure 17. Equilateral, triangular, thin, metallic at plate with inverted equilateral triangular hole with
a = 5:08 cm and b = 2:54 cm.
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(a) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.
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(b) H-polarized plane wave (�0 = 0�) at �i = 0� and 180�.

Figure 18. Monostatic RCS of equilateral triangular plate with inverted, equilateral triangular hole (shown in
�g. 17) excited by H- and E-polarized plane waves (�0 = 0� and 90�, respectively) as a function of �i for
f = 11:811 GHz with M = N = 19.

39



90 30 0 60 9060 30

Present method
ESP code

-20

-30

-40

-50

-60

σ     , dB-m

θ  , degi

2

φ   = -90°iφ   = 90°i

EE

(c) E-polarized plane wave (�0 = 90�) at �i = 90� and �90�.
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(d) H-polarized plane wave (�0 = 0�) at �i = 90� and �90�.

Figure 18. Concluded.
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Figure 19. Monostatic RCS of equilateral triangular plate with inverted equilateral triangular hole (shown
in �g. 17) excited by E-polarized plane wave (�0 = 90�) as a function of �i for f = 11:811 GHz with
M = N = 19 and �i = 90� (grazing incidence).
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Figure 20. Monostatic RCS of equilateral triangular plate with inverted, equilateral triangular hole (shown in
�g. 17) excited by E-polarized plane wave (�0 = 90�) at angles of incidence as a function of frequency for
M = N = 19.
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Figure 21. Thin, metallic, diamond-shaped at plate with a = 3:592 cm.
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(a) H-polarized plane wave (�0 = 0�) at �i = �90
� and 90�.
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(b) E-polarized plane wave (�0 = 90�) at �i = �90
� and 90�.

Figure 22. Monostatic RCS of diamond-shaped plate (shown in �g. 21) excited by H- and E-polarized plane
waves (�0 = 0� and 90�, respectively) as a function of �i for f = 11:811 GHz with M = N = 19.
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(c) H-polarized plane wave (�0 = 0�) at �i = 0� and 180�.
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(d) E-polarized plane wave (�0 = 90�) at �i = 0� and 180�.

Figure 22. Concluded.
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Figure 23. Monostatic RCS of diamond-shaped plate (shown in �g. 21) excited by E-polarized plane wave
(�0 = 90�) as a function of �i for f = 11:811 GHz with M = N = 19 and �i = 90� (grazing incidence).
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Figure 24. Comparison of CPU time required by present method using matrix inversion and decomposition
with CPU time required by ESP code.
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(a) E-polarized plane wave (�0 = 90�) at �i = 90�, �i = 90� with grazing incidence at tip.
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with normal incidence.
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(c) E-polarized plane wave (�0 = 90�) at �i = 0�, �i = 90� with normal incidence.
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(d) E-polarized plane wave (�0 = 90�) at �i = 90�, �i = �90� with grazing incidence at edge.
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